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In this chapter we will study about basic probability 

distribution or theoretical distribution of the random 

variables both discrete and continuous. Individual and 

corporate generate several data that resemble certain  

theoretical  distribution Scientifically there are several 

features of the theoretical distributions It needs to be  

prove for a quick analysis of this observe distribution. 

 

Some illustration of theoretical distributions are 

 Figure of female kids in a Kindred. 

 Figure of defected goods in a factory 

 Figure of candidates receiving salary in some limitations. 

 The theoretical distributions are categorized into two categories-- 

 Discrete probability distribution 

 Continuous probability distribution 

 

13.1 CHARACTERISTICS OF PROBABILITY DISTRIBUTIONS 

 

 Mean (): The expected value or average of the random variable: 

\mu = \sum x P(X = x) \quad \text{(discrete)} \quad \text{or} \quad \mu = \int_{-

\infty}^\infty x f(x) dx \quad \text{(continuous)} 

 Variance (): Measures the spread or dispersion of a distribution: 
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\sigma^2 = \sum (x - \mu)^2 P(X = x) \quad \text{(discrete)} \quad \text{or} 

\quad \sigma^2 = \int_{-\infty}^\infty (x - \mu)^2 f(x) dx \quad 

\text{(continuous)} 

 

 Standard Deviation (): The square root of variance, representing the spread in 

the same units as the variable. 

 

 Skewness: Indicates the asymmetry of a distribution. Positive skew implies a 

long tail on the right; negative skew implies a long tail on the left. 

 

 Kurtosis: Measures the "tailedness" of the distribution. Higher kurtosis indicates 

more extreme outliers. 

 

13.2 APPLICATIONS OF PROBABILITY DISTRIBUTIONS: 

 

Probability distributions are a cornerstone of statistical analysis and mathematical 

modeling. Their ability to represent and analyze uncertainties makes them 

indispensable across numerous domains.  

From predicting stock market trends to understanding disease outbreaks, probability 

distributions are used to describe random phenomena and make data-driven 

decisions. In this section, we explore the wide-ranging applications of probability 

distributions across various fields in detail. 

 

13.2.1 BUSINESS AND FINANCE 

 

Risk Assessment and Management 

 Probability distributions help businesses and financial institutions quantify and 

manage risks. 

 Credit Risk Modeling: Banks use probability distributions like the binomial and 

Poisson to estimate the likelihood of loan defaults. 

 Operational Risks: Distributions such as Weibull and exponential are used to 

assess the likelihood and timing of system failures or other disruptions. 
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13.2.2 STOCK MARKET ANALYSIS 

 

 Price Movements: The normal distribution is often used to model stock returns 

due to its bell-shaped curve, assuming returns are symmetrically distributed 

around the mean. 

 

 Volatility Estimation: Distributions like log-normal capture the asymmetric 

behavior of stock prices over time. 

 

 Option Pricing: Financial models like the Black-Scholes formula use probability 

distributions to calculate the fair value of options. 

 

13.2.3 DEMAND FORECASTING 

 

Businesses use Poisson and normal distributions to forecast demand for products or 

services, helping optimize inventory and reduce wastage. 

 

13.2.4 ENGINEERING AND MANUFACTURING 

 

A. Quality Control 

 

In manufacturing processes, binomial and normal distributions are commonly used 

to monitor quality. Example: A factory might use the binomial distribution to track 

the proportion of defective products in a batch. 

 

13.2.5 RELIABILITY ENGINEERING 

 

 Reliability analysis often relies on distributions to predict the lifespan and failure 

rates of components: 

 

 Weibull Distribution: Used to model the time to failure of machines and 

components. 

 

 Exponential Distribution: Applied to systems with a constant failure rate. 
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13.2.6 OPERATIONS RESEARCH 

 

Queueing Theory: Probability distributions such as exponential and Poisson are used 

to analyze service systems, including waiting times in customer queues or server 

response times in networks. 

 

13.2.7 HEALTHCARE AND EPIDEMIOLOGY 

 

13.2.7.1 DISEASE MODELING 

 

 Poisson distribution: Models the number of disease cases in a specific population 

over time. 

 

 Normal Distribution: Used in analyzing test results such as blood pressure, 

cholesterol levels, and other health metrics. 

 

 Exponential Distribution: Models the time between disease occurrences or the 

duration of a hospital stay. 

 

13.2.7.2 SURVIVAL ANALYSIS 

 

 Weibull Distribution: Widely used in medical studies to estimate patient survival 

times. 

 

 Kaplan-Meier Analysis: Probability distributions are integral to survival curves 

for analyzing patient outcomes. 

 

13.2.7.3 Drug Development 

 

 Pharmaceutical companies use probability distributions to analyze clinical trial 

data: 

 

 Beta Distribution: Used to model probabilities of success for new drugs. 
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 Normal Distribution: Assesses the efficacy of treatments by comparing treatment 

and control groups. 

13.2.8 ENVIRONMENTAL SCIENCE 

 

13.2.8.1 CLIMATE MODELING 

 

Normal and Exponential Distributions: Used to analyze temperature, rainfall, and 

other weather phenomena. 

 

Example: Meteorologists use these distributions to predict temperature ranges and 

rainfall patterns. 

 

13.2.8.2 RISK ASSESSMENT FOR NATURAL DISASTERS 

 

Extreme Value Distributions: Used to model rare events like floods, earthquakes, and 

hurricanes. 

 

Example: Predicting the likelihood of a 100-year flood helps design resilient 

infrastructure. 

 

13.2.9 SOCIAL SCIENCES AND PSYCHOLOGY 

 

13.2.9.1 SURVEY ANALYSIS 

 

Social scientists use discrete probability distributions like the binomial and 

multinomial to analyze survey results: 

 

Example: Understanding the distribution of opinions across demographic groups 

 

13.2.9.2 BEHAVIORAL STUDIES 

 

Normal Distribution: Models the distribution of IQ scores and other psychological 

traits in the population. 

 

Exponential Distribution: Models response times in cognitive experiments 
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13.2.9.3 INCOME AND WEALTH DISTRIBUTIONS 

 

Pareto Distribution: Often used to model the distribution of income and wealth, 

where a small percentage of the population controls a large share of resources. 

 

Log-Normal Distribution: Captures the distribution of wages in a population. 

 

13.2.10 COMPUTER SCIENCE 

 

13.2.10.1 MACHINE LEARNING 

 

Probability distributions play a key role in machine learning algorithms: 

Gaussian Naive Bayes: Assumes features follow a normal distribution to classify 

data. 

 

Hidden Markov Models: Use distributions like Poisson to model sequences, such as 

speech recognition or text processing. 

 

13.2.10.2 RANDOM NUMBER GENERATION 

 

Uniform Distribution: Generates random numbers for simulations, cryptography, 

and randomized algorithms. 

 

13.2.10.3 NETWORK ANALYSIS 

 

Erdős-Rényi Models: Use probability distributions to analyze random graphs and 

networks, such as social media interactions or traffic flows. 

 

13.2.11 EDUCATION AND RESEARCH 

 

13.2.11.1 TEST SCORE ANALYSIS 

 

Normal Distribution: Models student performance on standardized tests, such as 

SAT or GRE scores. 
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Binomial Distribution: Used to analyze success rates in exams with binary outcomes 

(pass/fail). 

 

13.2.11.2 EXPERIMENTAL DESIGN 

 

Probability distributions guide hypothesis testing and data analysis in research: 

 

T-Distributions: Compare means between groups in small sample studies. 

 

Chi-Square Distribution: Tests goodness-of-fit for categorical data. 

 

13.2.12 AGRICULTURE AND ENVIRONMENTAL STUDIES 

 

13.2.12.1 CROP YIELD PREDICTIONS 

 

Normal and Exponential Distributions: Used to predict crop yields under varying 

weather conditions. 

 

13.2.12.2 PEST AND DISEASE SPREAD 

 

Poisson distribution: Models the number of pests or disease outbreaks in a given area. 

 

13.2.13 SPORTS AND GAMING 

 

13.2.13.1 PLAYER PERFORMANCE 

 

Binomial Distribution: Models outcomes such as the number of goals scored by a 

player in a game. 

 

Normal Distribution: Evaluates player performance over a season. 

 

13.2.13.2 GAME THEORY 

 

Probability distributions are integral to analyzing strategies in competitive games, 

helping predict opponent behavior. 
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13.2.14. DEFENSE AND AEROSPACE 

 

13.2.14.1 MISSILE ACCURACY 

 

Normal Distribution: Models the deviation of missile impacts from their intended 

targets. 

 

13.2.14.2 RELIABILITY OF DEFENSE SYSTEMS 

 

Weibull Distribution: Predicts the reliability and failure rates of defense equipment 

under different conditions. 

 

13.2.15 ENERGY AND UTILITIES 

 

13.2.15.1 POWER LOAD FORECASTING 

 

Normal and Poisson Distributions: Used to predict electricity consumption and 

optimize grid operations. 

 

13.2.15.2 RENEWABLE ENERGY ANALYSIS 

 

Rayleigh Distribution: Models wind speeds for wind energy projects. 

 

Weibull Distribution: Evaluates solar panel efficiency under different conditions. 

 

13.2.16 TRANSPORTATION AND LOGISTICS 

 

13.2.16.1 TRAFFIC FLOW ANALYSIS 

 

Poisson distribution: Models the arrival of vehicles at intersections. 

 

Normal Distribution: Used to analyze travel times and optimize routes. 

 

13.2.16.2 SUPPLY CHAIN OPTIMIZATION 
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Exponential Distribution: Models delivery times and inventory replenishment. 

13.2.16.3 REAL-LIFE EXAMPLES 

 

 Weather Prediction: The probability of rainfall on a given day can be modeled 

using a binomial or normal distribution. 

 

 Quality Control: In manufacturing, Poisson distributions can be used to model 

the number of defective products. 

 

 Customer Behavior: Retailers use geometric distributions to analyze how many 

advertisements are needed to achieve a sale. 

 

13.3 LIMITATIONS OF PROBABILITY DISTRIBUTIONS 

 

Probability distributions provide powerful tools for modeling and analyzing random 

phenomena. They enable us to describe uncertainties, predict outcomes, and make 

informed decisions across disciplines such as business, engineering, healthcare, and 

social sciences. However, like any mathematical framework, probability 

distributions have limitations. These limitations arise from assumptions, real-world 

complexities, data quality issues, and challenges in application. This section explores 

the limitations of probability distributions in detail, offering insight into their 

practical constraints and the situations where they may fall short. 

 

13.3.1 ASSUMPTIONS IN PROBABILITY MODELS 

 

Probability distributions rely on a set of underlying assumptions. When these 

assumptions do not align with real-world conditions, the models may fail to represent 

the phenomena accurately. 

 

13.3.1.1 INDEPENDENCE OF EVENTS 

 

Many probability models, such as the binomial and Poisson distributions, assume 

that events are independent. In real-world scenarios, events often exhibit 

dependency. 
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Example: In social networks, one person’s behavior (e.g., buying a product) may 

influence others, violating the independence assumption. 

 

Impact: Using such models for dependent events can lead to inaccurate predictions. 

 

13.3.1.2 HOMOGENEITY OF PARAMETERS 

 

Probability distributions often assume that parameters like mean () or rate () remain 

constant. 

 

Example: The Poisson distribution assumes a constant event rate over time. 

However, in traffic modeling, the rate of car arrivals may vary during peak and non-

peak hours. 

 

Impact: Failing to account for varying parameters leads to incorrect conclusions. 

 

13.3.1.3. INFINITE SAMPLE SPACES 

 

Continuous distributions like the normal or exponential assume an infinite range of 

values, which may not be practical. 

 

Example: Heights of individuals follow a normal distribution but cannot realistically 

be negative or exceed certain biological limits. 

 

Impact: Such assumptions can produce nonsensical predictions at extremes. 

 

13.3.2 DATA QUALITY ISSUES 

 

The accuracy of probability distributions depends heavily on the quality and quantity 

of data available. Poor data can limit the effectiveness of probability models. 

 

13.3.2.1 INSUFFICIENT DATA 

 

Small datasets or sparse data can make it difficult to estimate distribution parameters 

accurately. 

 



ISBN: 978-93-6773-128-4 

 

HARNESSING THE POWER OF RENEWABLE ENERGY: A COMPREHENSIVE OVERVIEW OF 

GREEN RESOURCES                                                                                                                        239 

 

Example: Estimating the mean and variance of a population from a small sample 

may lead to overfitting or under fitting. 

Impact: Limited data may result in unreliable predictions or invalid conclusions. 

 

13.3.2.2. MEASUREMENT ERRORS 

 

Data collection often involves errors due to faulty instruments, human mistakes, or 

missing values. 

 

Example: In a manufacturing process, sensors may record incorrect measurements 

due to calibration issues. 

 

 

Impact: Such errors distort the probability distribution, reducing its reliability. 

 

13.3.2.3. OUTLIERS 

 

Real-world datasets often contain extreme outliers that deviate significantly from the 

rest of the data. 

 

Example: In income distributions, a few individuals may have exceptionally high 

incomes, skewing the results. 

 

Impact: Outliers can heavily influence parameters like the mean and variance, 

leading to inaccurate models. 

 

13.3.3 MISREPRESENTATION OF COMPLEX REAL-WORLD PHENOMENA 

 

Real-world phenomena are often more complex than the assumptions underlying 

standard probability distributions. 

 

13.3.3.1 MULTIVARIATE DEPENDENCIES 

 

Many real-world problems involve multiple variables that interact in complex ways. 
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Example: In weather forecasting, temperature, humidity, and pressure are 

interdependent. 

 

Impact: Standard univariate distributions (e.g., normal or Poisson) cannot capture 

these dependencies, requiring multivariate or specialized models. 

 

13.3.3.2 NON-STATIONARITY 

 

Some processes change over time or space, violating the stationary assumptions of 

many distributions. 

 

Example: Stock market returns may exhibit varying volatility across different time 

periods. 

 

Impact: Static distributions fail to account for such dynamics, necessitating time-

series models. 

 

13.3.3.3 NON-NORMALITY 

 

Many real-world datasets do not follow common distributions like the normal 

distribution. 

 

Example: Financial returns often exhibit heavy tails and skewness, making them 

unsuitable for normal distribution modeling. 

 

Impact: Applying inappropriate distributions leads to incorrect results and poor 

decision-making. 

 

13.3.4 CHALLENGES IN PARAMETER ESTIMATION 

 

Parameter estimation is crucial for defining probability distributions. However, it can 

be challenging due to the following reasons: 

 

13.3.4.1 OVERFITTING 
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In cases with limited data, fitting a complex distribution to match the dataset may 

result in overfitting. 

 

Example: Using a high-order polynomial to model a dataset results in a curve that 

fits the data perfectly but lacks generalization. 

 

Impact: Overfitted models fail to predict new data accurately. 

 

13.3.4.2 UNDERFITTING 

 

Conversely, using overly simplistic models may fail to capture important patterns in 

the data. 

 

Example: Fitting a linear model to a dataset with nonlinear trends. 

 

Impact: Underfitted models provide poor approximations, reducing their predictive 

power. 

 

 

13.3.4.3 COMPUTATIONAL COMPLEXITY 

 

Estimating parameters for complex distributions (e.g., multivariate distributions) 

may involve computationally intensive methods such as maximum likelihood 

estimation (MLE) or Bayesian inference. 

 

Example: Estimating parameters for a mixture of Gaussian distributions can be time-

consuming and resource-intensive. 

 

Impact: Computational demands may limit the applicability of certain distributions 

in large-scale or real-time scenarios. 

 

13.3.5 SENSITIVITY TO OUTLIERS AND EXTREME VALUES 

 

Probability distributions, especially those relying on the mean and variance, can be 

highly sensitive to outliers and extreme values. 
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Example: Normal Distribution 

 

The normal distribution assumes symmetry and is heavily influenced by extreme 

values, which can shift the mean and inflate the variance. 

In financial modeling, rare events (e.g., economic crashes) may be underestimated 

by the normal distribution. 

 

Impact 

Misrepresenting the true nature of data, particularly in high-stakes fields like risk 

management. 

 

13.3.6. INAPPLICABILITY IN NON-QUANTIFIABLE SCENARIOS 

 

Probability distributions are inherently quantitative and cannot be applied to 

qualitative data without proper encoding. 

 

Example: Survey Data 

 

Survey responses like "Strongly Agree" or "Neutral" are categorical and cannot be 

directly modeled using probability distributions without converting them into 

numerical values. 

 

Impact: The need for data preprocessing introduces potential biases and inaccuracies. 

 

13.3.7. OVERRELIANCE ON SIMPLISTIC MODELS 

 

While simple distributions like normal or Poisson are easy to use, they may not 

always be suitable for complex phenomena. 

 

Example: Financial Markets 

 

Financial returns often exhibit fat tails (extreme events) and volatility clustering, 

which standard distributions fail to capture. 

 

Impact: Overreliance on simplistic models like the normal distribution can lead to 

catastrophic errors, such as underestimating the likelihood of financial crises. 
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13.3.8 MISINTERPRETATION AND MISUSE 

 

Probability distributions are sometimes misused or misinterpreted due to a lack of 

understanding. 

 

13.3.8.1 CONFUSING CORRELATION WITH CAUSATION 

 

Probabilities indicate relationships between variables but do not establish causation. 

 

Example: A correlation between ice cream sales and drowning incidents does not 

imply causation. 

 

Impact: Misinterpretation can lead to flawed decision-making. 

 

 

13.3.8.2 MISREPRESENTING UNCERTAINTY 

 

A probability distribution provides a model of uncertainty but does not eliminate it. 

 

Example: Predicting a 90% chance of rain does not guarantee rainfall. 

 

Impact: Misrepresenting probability as certainty can erode trust in models. 

 

 

13.3.9 LIMITED FLEXIBILITY FOR RARE EVENTS 

 

Most standard distributions fail to capture the occurrence of rare but impactful 

events, such as natural disasters or economic crashes. 

 

Example: Black Swan Events 

 

Events with low probabilities but high impacts are poorly modeled by distributions 

like the normal distribution. 
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Impact: This limitation can lead to underestimating risks, especially in domains like 

finance and disaster management. 

13.3.10 THEORETICAL VS. EMPIRICAL DISTRIBUTIONS 

 

Probability distributions are often theoretical constructs, while real-world data may 

not conform to these theoretical shapes. 

 

13.3.10.1 THEORETICAL MODELS 

 

Idealized distributions like the normal or exponential are based on mathematical 

assumptions. 

 

Impact: Real-world data often deviates due to noise, biases, or other factors. 

 

 

13.3.10.2 EMPIRICAL DISTRIBUTIONS 

Empirical data may not align perfectly with any standard distribution. 

 

Example: Income distributions often exhibit heavy skewness and fat tails, which 

standard distributions cannot capture. 

 

13.4 RANDOM VARIABLE 

  

Random variable is a variable which calculates the occurrence of events. 

 

13.4.1 DISCRETE RANDOM VARIABLE  

 

Discrete random variable is used when favorable  outcomes in a probability 

calculations are counted when a unbiased coin flipping one time  probability event  

is 2, twist of  fate when the unbiased Coin tossed two times probability event is 4 and 

in the above 2 example  the number of outcomes are definite and is known as Discrete 

random variable. 

 

Examples: 

Number of heads in 10 coin tosses (0, 1, 2, ..., 10). 

Number of defective items in a batch (0, 1, 2, ...). 
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Key Properties: 

 

 Takes specific, separate values (e.g., integers). 

 Probabilities are assigned to each value, and the total probability is 1. 

 Modeled by distributions like Binomial, Poisson, or Geometric. 

 

13.5 PROBABILITY MASS FUNCTION (PMF): 

 

The probability of a discrete random variable being equal to a specific value is: 

P(X = x) 

 

13.5.1 CONTINUOUS RANDOM VARIABLE  

 

Continuous chance variable is used when the number of reactions in a probability 

calculations is innumerable for example the values of bus timings for exit and 

entrance at a bus stop are the Continuous random variables. Just like weight and the 

IQ level quotient of the People. 

 

Examples: 

Heights of students (e.g., 160.5 cm, 162.3 cm). 

Time taken to complete a task (e.g., 2.4 hours, 3.8 hours). 

 

Key Properties: 

 

 Takes infinite values within a range (e.g., all real numbers between 0 and 1). 

 Probabilities are defined over intervals, not specific points, because the 

probability at a single point is 0. 

 Modeled by distributions like Normal, Uniform, or Exponential. 

 

13.6 PROBABILITY DENSITY FUNCTION (PDF) 

 

For continuous random variables, probabilities are represented by a PDF. The 

probability that  lies within an interval  is: 

P(a \leq X \leq b) = \int_a^b f(x) \, dx 
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13.6.1 PROBABILITY DISTRIBUTIONS  

 

A probability distribution describes how the probabilities of different outcomes are 

distributed for a random variable. It provides a mathematical function or table that 

specifies the likelihood of each possible outcome. 

Probability distributions are categorized into two categories discrete and continuous.  

 

13.6.2 DISCRETE PROBABILITY DISTRIBUTION 

 

For variables with specific values (e.g., rolling a die). 

Example: Binomial, Poisson. 

With, the help of binomial distribution and poission distribution through which we 

can solve any hypothetical into conceptual probability. 

 

13.6.3 CONTINOUS PROBABILITY DISTRIBUTIONS 

 

For variables that take on an infinite number of values within a range (e.g., heights 

of people). 

Example: Normal, Exponential. 

Continuous probability distribution is a random variable in which it assumes the 

value with the help of normal distribution table.  

 

13.7 BIONOMIAL DISTRIBUTION 

 

Binomial distribution is a variable which can be solve with the help of  P,Q, n  where 

P is favorable outcome and Q is non-favorable outcome and n is total outcome .  

 In this theorem formula is (a+b)n= ∑n
r=0

nCr a
n-rbr, where n is a positive integer and 

a, b are real numbers, and 0 < r ≤ n. 

P(x) = nCx · p
x (1 − p)n−x 

Properties: 

1. Fixed number of trials (n): The process consists of a specific number of trials. 

2. Independent trials: The outcome of one trial does not affect another 

.3. Two outcomes per trial: Each trial has two possible outcomes — success (with probability p) or failure (with 

probability 1-p). 
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4. Constant probability: The probability of success (p) remains the same for all trials. 

 

13.7.1 ASSUMPTION FOR APPLYING A BINOMIAL DISTRIBUTION  

 

These are some cases where we apply binomial distribution - 

 The binomial experiment is P,Q Base where P is favorable and Q is non-favorable  

 The probability of favorable result must be equal for all hit when a coin tossed 

two or three time getting a head is always 0.5 and tail are also 0.5. 

 It needs to be conducted under similar conditions. 

 

Examples of binomial variate: 

 

There are some examples of binomial variate – 

 From manufactured lot 6 articles are drawn for defective random sample  

 when a coin is flipped  8 times number of  any front  turn  

 

Illustration 1 

An impartial coin is flipped six chance. What is the chance that Result in 2 heads 

Minimum 5 heads Up to 2 heads up to 1 head more than 5 heads Minimum 1 head 

 

Answer 

 

Let ‘A’ getting heads . 

p = ½ , q = ½ , n = 6 

Therefore, by binomial distribution,  

P(X = x) = ⁶Cx(1/2)6-x(1/2)⁶ 

 

¡)  It needs to be calculate getting two heads 

P(X = 2) = ⁶C2(1/2)6-2(1/2)⁶ 

= (6/1×5/2)(1/2⁴)(1/2²) 

= 15/64 

Therefore answer of  two Heads is 15/64. 

 

¡¡) The probability minimum  5 heads  

P{X >5)= P(X = 5)+ P(X = 6) 

= ⁶C5(1/2)6-5(1/2)⁵+ ⁶C6(1/2)6-6(1/2)⁶ 
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= 6*(1/2)⁶+(1/2)⁶ 

= 7/64 

Therefore, the probability minimum is 5 heads  

Heads is 7/64. 

 

iii) The probability up to 2 heads is givenby: 

P(X <2) = P(X=0)+P(X=1)+P(X=2) 

=(1/2)⁶+⁶C1(1/2)6-1(1/2)⁶+⁶C2(1/2)6-2(1/2)⁶ 

P(X < 2)= (1/64)+ (6×1/64)+ (6/1 × 5/2 * 1/64) 

= 1/64+ 6/64+ 15/64 

= 22/64  

= 11/32 

Therefore, the probability up to twoHeads is 11/32. 

iv) The probability up to  one head  

P(X <1) = P(X =0)+ P(X = 1) 

= 1/64+ 6/64 

= 7/64 

Therefore, the probability  up to 1 head is 7/64. 

 

v) The probability that more  than 5 heads  

P(X > 5) = P(X = 5)+ P(X = 6) 

= 6/2⁶+ 1/2⁶ 

= 7/64 

Therefore, the probability more  than fiveHeads is 7/64. 

 

vi)The probability minimum  one head is given by: 

P(X≥1)=1-P(X<1) 

=1-P(X=0) 

=1-1/2⁶ 

= 1-1/64  

= 63/64 

Therefore, the probability minimum one headis 63/64.ssss 

 

Solved Problem 2 

 

In a cement factory disease chances is 20% therefore there are five employe  
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Calculate probability  

None contact the disease   

Two contact   the disease 

Minimum contract the disease  

      Ans .      p = 20/100 = 0.2 

...    q = 1- 0.2 = 0.8 

            n = 5 

such that , 

P(X = x)= ⁵Cx(0.8)5-x(0.2)x 

 

i)The probability that none contact  the disease is given by: 

P(X=0)=(0.8)⁵ = 0.3277 

Such that, the probability that none contact the  disease is 0.3277. 

 

ii)The probability that 2 contact  disease is given by: 

P(X=2)= ³C₂ (0.8)³ (0.2)²  

=(10)(0.512)(0.04)=0.2048 

Therefore, the probability that two contact disease is 0.2048. 

 

iii)The probability that minimum 4  contact the disease . 

P(X > 4)= P(X = 5)= (0.2)⁵ = 0.00032 

Therefore, the probability that minimum contact the disease is 0.00032. 

 

13.7.2 POISSON DISTRIBUTION 

 

Poisson distribution apply when number of trials selected in a large number like 

thousand two thousand and four thousand and chance is 2, 3, 4 then we calculate 

mean m is equal to np where p is the favorable chance. In this case binomial 

distribution cannot be applicable 

P(X) = e-m mx/∠x 

 

Characteristics: 

 

 Discrete Distribution: It deals with the count of events (e.g., number of customer 

arrivals). 

 Independent Events: Occurrence of one event does not affect another. 
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 Constant Rate (λ): The average number of events per interval (λ) is constant. 

 No Overlapping Events: Two events cannot happen simultaneously. 

 Poisson distribution assumptions  

 The outcome of trial must be bifurcated  

 success must remain similar 

 The trials should be statistically independent.  

 

Example-There are 2000 houses in town. Chances of catching fire is 2 in one 

thousand house what is the probability that: 

  No houses catches fire 

  minimum  one house catch fire  

 

Solution 

P=2\1000=0.002 and n=2000 

M=np=4 

The probability that no house catches fire 

P(X) = e-m mx/∠x 

P(0)=0.01832 

The probability that minimum house catches fire 

P(X>1)=1-P(X=0)s 

1-0.01832 

=0.98168. 

 

13.7.3 NORMAL DISTRIBUTION 

 

 The quantitative variables which consist the measure of height, weight humidity and 

so on are example 

 Normal Distribution features  

 It is continuous distribution  

 It mean is µ and standard division is  σ where µ and σ are the parameters of the 

distribution 

 It is well saved figure and is proper about its mean. 

 The mean line divides two equal part  

LIMITS AREA% 
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µ±σ 68.2 

µ±1`96σ 95 

µ±2σ 95.4 

µ±3 σ 99.7 

 

Understanding Normal Distribution 

The normal distribution is  very popular distribution it represents a well saved curve 

and its mean line is divided into equal part 50% left and 50% right Left represent less 

than mean right part represent more than mean . 

The Formula for the Normal Distribution 

Z=X-µ/σ 

 

 
 

S.N.D 

Example no. 1 – The weight of bourn vita the  follows normal distribution his mean 

weight is 500gm and standard division 10gm if select one packet what will be the 

probability.   

1. The packs weight will be greater than 515 gms ? 

. The packs weight will be between  

480 to 500 gms ? 

The packet  > 480 and < 520 
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If 10000 packets are delivered, how many packets  will be cancelled , In 480 gms  

and 520 gms  for  ?  

Solution: by normal curve--  

It will exceed 515 gms  

P(X >515) = 0.5- P (500 <X < 515) 

= 0.5-P ( 500-500 /10 < Z <515-500/ 10 ) = 0.5 – P ( 0<Z<1.5) = 0.5 – 0.4332=0.668 

Therefore, answer  515 gms is 0.0668.  

2-The probability  ,waight lie  within  480 to 520 gms  

P[480< x<< 520=P(480<x< 500 ) +P (480 < x <500 

.4772+.4772=.9544 

P(480 ≤X ≤ 520 )= 0.9544 

If the weight lies outside these values then it will be rejected. 

:. The probability of rejection =1-0.9544=0.0456 

The number of packets that will be rejected is given by N × P. 

N×P = 10000 x 0.0456 = 456 

The rejected packet will be 456. 

 

Example no 2 

X is a Normal variate  mean 42 and standard deviation 4. calculate the Probability of  

value  X  

Less than 50 

Greater than 50 

 

Solution 

X is a normal variate .  

µ = 42 and o = 4. 

Therefore, 

Z=X-μ/4  

= X-42/4 Is a Standard normal variate. 

 

P ( X < 50 ) = P(X- 42/4 < 50- 42/4) = P(Z < 2) 
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Fig. 1: Normal curve 

P (Z< 2 )= Standard normal area from - ∞ to 2 

= [area from ∞ to 0] + [area from 0 to 2] 

= 0.5 +0.4772 (from the table) 

= 0.9772. 

 

P ( X < 50 ) = P(X- 42/4 < 50- 42/4) = P (Z > 2) 

 

 

Fig. 2: Normal curve 

 

P(Z > 2)= area from 2 to ∞ 

= [area from 0 to ∞] – [ area from 0 to 2] 

= 0.5-0.4772 (from the table) 

= 0.0228. 

Example-3 

Mean life of fan construct  by a unit  is 1200 hours. The standard deviation is 200 

hours. 

In  10,000 fans, how many fan  life1050 hours or more? 

  2) What is the % of fans which are look for  fail before 1050hours of  favour ? 



ISBN: 978-93-6773-128-4 

 

HARNESSING THE POWER OF RENEWABLE ENERGY: A COMPREHENSIVE OVERVIEW OF 

GREEN RESOURCES                                                                                                                        254 

 

Solution 

Let X’ denote the life of the fans. Then, X is a normal variate with 

Parameters μ = 1200hrs and σ = 200hrs 

Z = X-μ÷σ 

Z =X-1200÷200 is a Standard normal variate. 

Probability that life of a fan is 1050 hours or more is 

P(X ≥1050) = P[X-1200÷200>1050-1200÷200 ]=P[Z≥ -0.75] 

 

Fig 3: Normal curve 

P[Z≥-0.75] = [area from -0.75 to 0] + [area from 0 to ~] 

= [area from 0 to 0.75] + [area from 0 to ∞] 

=0.2734 + 0.5 = 0.7734 

(since normal distribution is symmetrical -0.75 value is same as 

0.75) 

In a lot of N = 10,000 fans , Await  number of fans  with life 1080 

Hours or more is N x P [X21050] = 10,000 x 0.7734 = 7734 

 

Probability that life of a fan is 1050 hours or less is 

P(X ≥1050) = P[ X-1200÷200 > 1050-1200÷200 ] = P[Z≥ -0.75]  

 

Fig 4: Normal curve 

P(Z ≤ -0.75) =[area from 0 to ] – [ area from 0 to 0.75) 

= 0.5-0.2734 = 0.2266 
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The % of fan age < 1500 hours is 

100 x P(X ≤1050) = 100 x 0.2266 = 22.66 

 

13.8 CONCLUSION 

 

Probability distributions are a cornerstone of mathematics and statistics, providing a 

structured framework for understanding and modeling randomness. Their 

significance lies in their ability to represent the variability inherent in natural and 

human-made systems, transforming uncertainty into quantifiable and analyzable 

forms. By assigning probabilities to different outcomes, probability distributions 

enable researchers, professionals, and decision-makers to gain valuable insights into 

random phenomena, make informed predictions, and address complex challenges 

across a wide array of fields. 

 

One of the most significant contributions of probability distributions is their role in 

simplifying complex systems. Real-world phenomena, such as stock price 

movements, machine failures, disease outbreaks, and weather patterns, often involve 

uncertainty and randomness that cannot be fully explained by deterministic models. 

Probability distributions provide a mechanism to approximate these uncertainties and 

predict their behavior. For instance, the normal distribution, with its symmetric bell 

curve, models numerous natural and social processes, while the Poisson distribution 

captures the occurrence of rare events like accidents or system failures. Such 

distributions form the basis for statistical inference, helping practitioners evaluate 

hypotheses, test models, and draw conclusions with a clear understanding of 

associated uncertainties. 

 

The applications of probability distributions are as diverse as they are profound. In 

finance, they are used to estimate risks, analyze market trends, and price financial 

instruments. In healthcare, they are central to understanding disease progression, 

predicting survival rates, and evaluating drug efficacy. Engineering relies on 

probability distributions for quality control, reliability testing, and system design, 

while fields like environmental science use them to model weather patterns, predict 

natural disasters, and assess climate risks. Social scientists use probability 

distributions to analyze survey data, study income distributions, and explore 

behavioral patterns. Their universality ensures their relevance across virtually every 

domain of human activity. 
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Despite their widespread utility, probability distributions are not without limitations. 

Many rely on assumptions—such as data normality, independence, or stationarity—

that may not always hold in real-world settings. When these assumptions are 

violated, the accuracy and reliability of predictions can be compromised. 

Additionally, the quality of data plays a critical role in the effectiveness of probability 

distributions. Poor or incomplete datasets can lead to distorted models, and 

misinterpretations of results can have serious consequences, especially in fields like 

finance, healthcare, and public policy. Furthermore, while traditional distributions 

are effective for many applications, they often struggle to model complex phenomena 

involving extreme values, multivariate dependencies, or dynamic changes over time. 

 

As we move into a data-driven era, the relevance of probability distributions 

continues to grow. Emerging technologies, such as machine learning and artificial 

intelligence, are integrating probability distributions into predictive algorithms, 

enabling models to adapt to complex, high-dimensional datasets. Innovations like 

dynamic and non-stationary models are addressing traditional limitations, improving 

the ability to handle evolving systems. The integration of traditional probability 

theory with advanced computational tools offers new opportunities to model and 

analyze phenomena that were previously considered intractable. 

 

In conclusion, probability distributions are more than just mathematical abstractions; 

they are indispensable tools for understanding and navigating uncertainty. Their 

ability to describe randomness, predict outcomes, and inform decision-making has 

made them fundamental to science, technology, and human progress. As their 

methodologies evolve, probability distributions will remain at the forefront of 

tackling the uncertainties of an increasingly complex and interconnected world. 
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