

CHAPTER 5

ENERGY MANAGEMENT SYSTEMS AND IOT (INTERNET OF THINGS)

DR. AARTI RANI

ASSISTANT PROFESSOR, DEPARTMENT OF COMPUTER SCIENCE
LUCKNOW PUBLIC COLLEGE OF PROFESSIONAL STUDIES

draartiranilpcps@gmail.com

MS. MEENU VERMA

ASSISTANT PROFESSOR, DEPARTMENT OF COMPUTER SCIENCE
LUCKNOW PUBLIC COLLEGE OF PROFESSIONAL STUDIES

KEYWORDS

INTERNET OF THINGS,
APPLICATIONS OF IOT, ENERGY MANAGEMENT, IOT ENERGY MANAGEMENT BENEFITS,
APPLICATIONS FOR ENERGY SAVING INITIATIVES

ABSTRACT

Private companies and policymakers are enhancing the implementation and development of smooth grid technology advancements that can enable better energy systems. A wide range of energy sector applications are made possible by technological advancements like the IoT, including transmission and supply, power generation, incorporation of renewable energy, load distribution, energy demand management, etc. The energy sector could undergo a radical change in how energy is produced, distributed, and consumed if the IoT is integrated. IoT can make it possible to observe, regulate, and enhance energy systems in real-time, which will increase their sustainability, dependability, and efficiency. The significant rise in urbanization in recent years necessitates intelligent, effective, and sustainable solutions for the environment, quality of life, government, transportation, and other areas. Numerous advanced and pervasive applications are available through this technology. IoT played a great role in managing energy systems by providing a new smoother grid and improving security and

higher competence. The IoT and other new autonomous technologies are improving production process monitoring (nearly) in real-time. Energy consumption monitoring is one area where IoT is essential. Through the collection of real-time energy consumption data, IoT technology (such as smart meters and sensors) raises awareness of patterns in energy consumption.

Among the most significant issues that the globe today is the growing need for energy, which is expected to rise by more than 25% over the next 20 years. It is now crucial to address this issue effectively while reducing waste. A lack of knowledge about energy consumption patterns leads to poor energy management methods at the production level in many firms. It is anticipated that energy savings will be possible through the use of cutting-edge energy monitoring technologies and management strategies, as well as through increases in the energy competence of particular manufacturing processes. The emergence of the IoT as a game-changing technology in this endeavor has the potential to completely transform energy management systems in several industries. The IoT has the prospective to provide previously unheard-of insights into patterns of energy consumption through its network of interconnected devices and sensors. The IoT paradigm enhances the visibility and knowledge of energy use through the implementation of smart sensors and smart meters at the machine and production line levels. To better understand how IoT-powered smart energy management systems are changing the arena of energy resource monitoring, control, and maintenance, this chapter will examine the transformational potential of IoT in optimizing energy utilization.

5.1 INTRODUCTION

Energy is one of the most important components of the nation's technical development. Sustainable development depends on energy efficiency and

conservation. Energy management is the term used to describe the process of conserving energy. Therefore, energy management refers to the process of organizing energy-saving strategies, keeping an eye on energy use, and regulating and preserving energy in a house. It entails (i) measuring the amount of energy being used now and devising ways to reduce it, (ii) identifying opportunities to save and calculating the potential savings, (iii) taking action to save energy, such as switching to LEDs from tube lights, and (iv) assessing how well energy management is working. Every organization needs energy management in several ways. It is a worldwide requirement to reduce operating costs and save energy, which has an impact on many other areas.

A novel approach to smart energy systems is IoT. The data gained from new IoT-connected devices are utilized to develop innovative technologies, improved output and performance, resolve urgent issues, improve decision-making in real time, and generate original and imaginative experiences. But as more devices connect, electricity providers have to deal with increased security, fragmentation, and interoperability issues. To improve performance, security, and dependability, various technologies related to information suggest ascendant, cohesive hardware and software resolutions that are specially made to encounter a variety of market demands and function well with existing energy networks. Designing sophisticated power management systems for industrial facilities requires interoperability and interconnectivity. The energy industry is probable to undergo a substantial transformation due to IoT, which will accomplish the electrical grid, produce power, and upsurge energy effectiveness.

Thanks to sensor-based technology and data analytics, wind and solar farms are becoming more mechanised and efficient. Due to a lack of knowledge about energy consumption patterns, many industries' energy management procedures at the production level suffer. Indeed, energy savings are anticipated to be possible through the use of cutting-edge energy monitoring systems and management techniques, as well as through increases in the energy efficiency of particular manufacturing processes. The IoT has permeated most spheres of human life in recent years, including communities, buildings, universities, warehouses, businesses, and poultry, hospitals, and health centers [1]. For the IoT to gather and share data, electronics, software, sensors, drives, and communication networks are integrated into physical devices, automobiles, household appliances, and other parts [2]. The IoT makes it possible to directly detect or operate objects using current network technology, improving performance and fostering a stronger relationship among the real world

and computer-based networks [3]. Because of the financial advantages and long-term environmental sustainability, academics have recently shown a greater appreciation for the subject of lowering energy usage. The majority of the solutions put forth to deal with this significant issue incorporate certain perspectives [4]. The Internet of Things, its applications, energy, and energy control, the function of the IoT in managing energy, and the regulatory issues surrounding its incorporation in energy management will all be covered in this chapter.

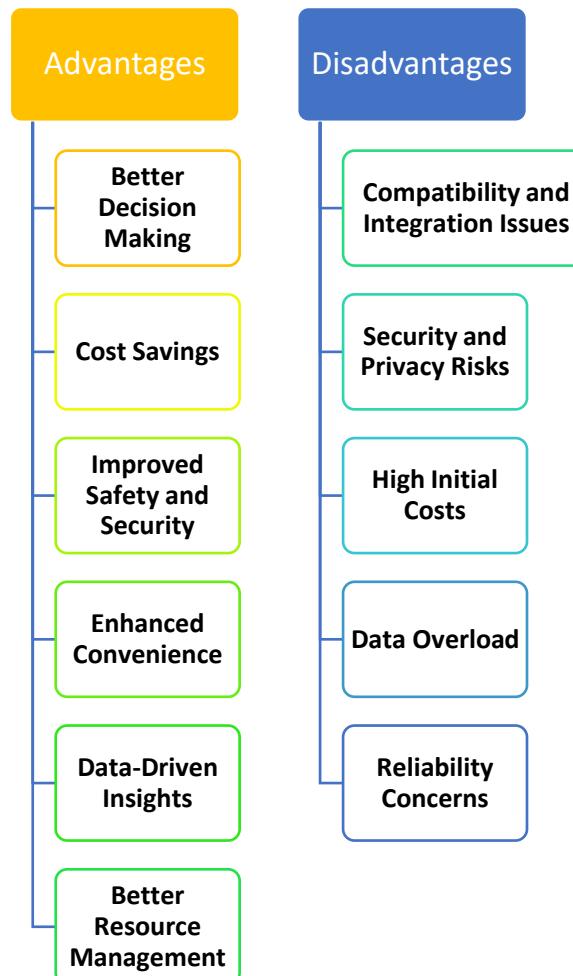
5.2 INTERNET OF THINGS (IOT)

Transmit data over the Internet or other communication networks, a network of physical objects—devices, cars, appliances, and other "things"—that are equipped with sensors, software, and other technologies is known as the Internet of Things (IoT). These "things" could be whatever from commonplace home appliances identical smart refrigerators and thermostats to industrial machinery, medical equipment, or even civic infrastructure like streetlights. One such paradigm change in the arena of information technology is the IoT. The terms "Internet" and "Things" are the first and second words that make up the phrase "Internet of Things," which is also commonly known as IoT. The Internet is a world-wide network of connected computers that assists billions of people universally using the standard Internet protocol suite (TCP/IP). Millions of resident to global private, communal, academic, commercial, and administrative networks are associated by a wide range of electronic, wireless, and optical networking technologies, establishing a network of networks [4]. The IoT is still the latest and greatest thrilling idea in the IT industry, and it is growing. With its visualisation of a worldwide architecture of networked physical items, the phrase "Internet of Things" (IoT) has garnered interest throughout the earlier ten years, permitting connectivity for everything, wherever, at any time, and not just for one person [5]. The roots of the popular term "Internet of Things" began with coffee vending machines in the 1980s. Kevin Auston, the Executive Director of Auto-ID Labs at MIT, first used the term in 1999. In 2003, the Auto-ID Centre and articles by associated industry analysts helped popularise the idea of the IoT [6].

5.2.1 APPLICATIONS OF IOT

Applications have made our lives easier. It's amazing what the Internet of Things can accomplish! Imagine living in a house where the lights switch on by themselves, the TV recognizes your favorite shows, and even the refrigerator can notify you when

you're out of ice cream! Yum! IoT enables machines to function as a cohesive team, much like a group of robots, in large industries! They can even correct themselves when something goes wrong. Incredibly intelligent! Physicians can utilize IoT to remotely check on patients in hospitals. Having a doctor with superpowers is like having one! Although IoT may be used for personal purposes, it can also be utilized in a variety of ways to help businesses, whether they are start-ups or large corporations, organize. The following six Internet of Things (IoT) applications are ranked by broad category by Frost & Sullivan: Safety and Monitoring, Environmental, Social, and Corporate Governance (ESG) Process Automation, Smart Manufacturing, and Industrial Automation, Smart meters and advanced measurement infrastructure, Consumer electronics that are connected [7].


FIG 5.1: APPLICATIONS OF IOT

5.2.2 BENEFITS AND ISSUES OF IOT

The term "Internet of Things" is a system of interconnected devices that may assemble and exchange data without the need for human support. This technology is revolutionizing several sectors and facets of daily life. Unemployment may result from unskilled workers' increased risk of losing their jobs. Robots, smart washing machines, smart ironing systems, smart surveillance cameras, and other amenities are taking the place of security personnel, maids, ironmen, dry cleaners, and other services. The planning, development, management, and implementation of a comprehensive platform for IoT framework are quite challenging.

FIG2: ADVANTAGES AND DISADVANTAGES OF IOT

5.3 ENERGY MANAGEMENT

Energy management is the process of keeping an eye on, managing, and preserving energy in a building or organization. Fundamentally, it entails researching energy use and putting energy-saving measures into action. The dynamic field of energy management (EM) integrates science, technology, and policy to lower energy costs and use. There are important social and financial ramifications to the broad implementation of energy management techniques. It encourages a change to more environmentally friendly activities, which lessens the impact on the environment and spurs the development of energy-efficient technologies. In terms of the economy, it promotes the expansion of industries like the production of energy-efficient machinery and renewable energy. Usually, this entails the following actions:

- Measuring energy use and gathering information. Identifying energy-saving options and calculating the potential energy savings from each one. Usually, meter data is analyzed to identify and measure routine energy waste. Also, look at potential energy savings by increasing the insulation in our building or replacing equipment (like lights).
- Targeting energy-saving opportunities by taking action (i.e., replacing or updating inefficient equipment and addressing routine waste).
- Energy conservation is a global necessity. It's possible that the phrase "energy management" would never have been created if it weren't for the worldwide need to conserve energy. We must conserve energy on a global scale to: Minimise the harm we are causing to the Earth. Making the Earth last makes it logical because, as a species, we would likely find things rather tough without it. Cut back on our reliance on the finite supply of fossil fuels.
- Using a variety of data-driven optimization techniques to lower energy supply costs is known as energy management. Modernizing or even optimizing the utilization of current energy consumers can help reduce costs. An alternative source of income could come from marketing flexible users, such as in the case of electro-mobility or electrified heat delivery, or from private energy-generating facilities, like rooftop photovoltaic systems. Here are some objectives of energy management:

Objectives of Energy Management	
Transparency	Optimization
Management	Integration

Energy use is the single biggest operating expense for a commercial office block in the United States, according to energystar.gov (link outside of IBM). It contributes over 20% of the country's yearly greenhouse gas emissions and around one-third of an organization's normal operational costs. According to Energy Star®, up to one-third of the energy used by office buildings is wasted.

An organized procedure is used by energy management systems to track and regulate a facility's energy use. Data collecting on energy consumption from multiple sources within the company is the first step in this procedure. Electricity, gas, water, and other energy usage data are collected in real-time by EMS using sensors and meters placed at strategic locations.

After gathering the data, the EMS examines it to find trends, highs, and abnormalities in energy usage. Understanding where and when energy is used most and least efficiently is made easier by this approach. By automating the functioning of machinery, HVAC, lighting, and other systems, the EMS optimizes energy use by controlling energy output based on these insights. For improving energy management there is a well-known technology IoT. The ability of IoT to lower energy costs is its most significant contribution to energy management. By 2030, integrating IoT into energy management systems can reduce electricity usage by more than 1.6 petawatt-hours (PWH), which is sufficient to power over 150 million households for an entire year. In accumulation to increasing the electric power supply's efficiency, the IoT energy management system can offer several other welfares, such as substantial cost savings, improved safety, and improved energy data supervision [8].

5.4 IOT ENERGY MANAGEMENT

In the arena of energy management, the IoT has become a radical force. The IoT is centered on a network of linked systems and devices that facilitate easy data sharing and communication. IoT devices play a vital role in energy management by offering a thorough framework for tracking and maximizing energy use. The capability of IoT to enable accurate and real-time energy usage monitoring is a key component of its influence on energy management. Businesses can obtain complex insights into energy usage by carefully placing IoT-enabled sensors and devices throughout infrastructures. Making proactive modifications for maximum energy efficiency is made possible by this data, which supports well-informed decision-making. Modern energy management systems are built on top of Internet of Things devices, which range from smart meters to complex sensor networks. These gadgets collect, interpret, and send data with ease, providing a thorough picture of patterns in energy

use. When coupled with cutting-edge IoT devices, this data becomes the foundation for putting specific strategies for resource-saving and energy optimization into action.

Through the use of IoT technology, companies, and sectors go beyond the bounds of conventional energy management, embracing a data-driven strategy that optimizes productivity while reducing waste [9]. IoT applications are using more energy, and the quantity and specifications of IoT devices are still increasing. Consequently, smart city solutions need to be able to manage the related issues and use energy effectively. In smart cities, energy management is seen as a fundamental pattern for the implementation of intricate energy systems [10].

5.5 LITERATURE REVIEW

One of the most critical issue is to provide energy to the every smart field. Given the ongoing population growth and improvements in living standards, it is clear that the problem of rising energy demand cannot be reversed. Every city will have to deal with an increasing number of energy-related issues, mostly caused by the finite conventional energy reserves and the ongoing rise in energy consumption. Meanwhile, several time-consuming and tiresome occupations have been automated due to the steadily rising demand for energy and human tendencies to constantly improve their quality of life [11]. Research targeted at maximizing energy use and advancing sustainability has surged as a result of the introduction of novel technology. Scientists and engineers are increasingly looking to IoT-enabled solutions and advanced machine learning algorithms to transform how energy is monitored, controlled, and optimized in residential settings due to the rising demand for effective resource usage and the urgent need to mitigate environmental impact.

Year	Author	Summary of Contribution
2024	Qayyum, F., Jamil, H., et al.	The author presents the best power management method for trading energy in nanogrids. To give energy distributors useful information, this system includes an RNN prediction module. Managing ESS Power, Optimising Energy Trading Costs, and Reducing Grid Power Consumption are its three main optimization modules. Our suggested architecture uses Raspberry Pi-based Edge technologies and IoT sensors to execute tasks virtually within an IoT-orchestrated framework [12].

2024	Manivannan, R.	A connection to the internet of smart charging systems is used in this study to schedule V2G connectivity for hybrid electric cars. It makes it possible for the system to acquire knowledge from its environment, which leads to more efficient and accurate control [13].
2024	Kaur, J.	The idea of a "sustainable triad," which addresses the environmental issues that metropolitan areas face by integrating EMS known as energy management systems, green healthcare initiatives, and smart cities, is explored in this paper. First, it examines the importance of EMS in maximizing energy use and lowering carbon emissions across a range of sectors. Integrating EMS allows healthcare facilities to effectively track and manage energy use, spot inefficiencies, and switch to renewable energy sources—all of which promote greener practices. The second section explores how smart cities can support sustainable urban growth. Smart cities can enhance transportation, energy dissemination, and infrastructure by exploiting cutting-edge technology like AI and the IoT[14].
2024	Wu, P., et al.	This work represents a breakthrough by offering Smart Islanded Hybrid Microgrids as an affordable and adaptable option. These microgrids are a viable substitute for current technology since they provide larger communities with increased energy security. The author overcame the nonlinearity of the suggested technique by using Estimation of Distribution Algorithms (EDA) to tackle the given problem [15].
2023	Saleem, M. U., et al.	For effective demand-side control, this study proposes a SMEMS for smart settings that combines the Energy Controller with an IoT middleware module. All appliance is interconnected to an energy controller, which is an IoT object that assimilates a huge number of sensors and actuators. The energy controller gathers data on energy usage from every smart device throughout diverse time slots that are envisioned to maximize the energy usage of

		air conditioning systems according to the temperature outside [16].
2021	Saleem, M. U et al.	The author created a framework to design, build, test, and validate a low-cost SEMS system that uses an Internet of Things-based method for monitoring daily electricity usage. It gathers and sends the collected data to the gateway module, which controls and gives customers access to their electricity usage data through consumer applications, using Internet of Things communication protocols. The installed SMs are online for real-time data collection [17].
2021	Hashmi, S. A., Ali et al.	The author describes the planning, development, and execution of an EMS based on cloud computing and the IoT that creates a customer load profile that consumers or utility providers can view remotely. Customers' load profiles can be used by utility providers to manage and disperse incentives and motivate consumers to decrease their energy consumption. For informal placement at the customer's location, our envisioned EMS is integrated into a Project Circuit Board [18].
2021	Aliero, M. S., Qureshi et al.	This paper details the effective creation of a modular home energy management system based on the IoT that allows customers to regulate how much electricity their appliances use [19].
2020	Said, O., et al.	This study proposes an Internet of Things Energy Management Scheme (EMS). Three techniques are included in the suggested EMS. Cutting down the amount of data that can be directed across the Internet of Things environment is the first tactic. In the second strategy, the important energy IoT nodes' work is scheduled. IoT nodes will inevitably encounter energy issues, and the third technique offers a fault tolerance setup that can be used to handle them [20].

2020	Pawar, P., et al.	This study proposes a Smart methodology to manage energy consumption in a smart grid setting where renewable energy sources are widely used. The suggested plan evaluates several prediction models to provide precise energy forecasts for daily planning and hourly. The accuracy of the PSO-based SVM regression technique is higher than that of several other prediction models. [21].
2019	Mataloto, B et al.	To assist local administration entities in identifying savings from personalized data visualization, the Author devised an innovative approach. The design of customized heuristics that are automatically used allowed for the local implementation of these savings measures. Related to a diversity of equipment, this collaboration technique with heating or air conditioning systems was shaped using an infrared method. To provide a combined opinion in consoles that may be dispersed to mobile devices, the gathered data is altered [22].
2018	Marinakis, V., et al.	In this study author focused on IoT-based system and enables energy end users to recognize the overall amount of energy used and the role that each individual end-user alongside their peers plays in it. Additionally, they receive tailored suggestions for energy-saving and load-shifting measures, along with an assessment of their effects on energy consumption and user ease [23].
2015	Ożadowicz, A., et al.	An Internet of Things energy meter control application is presented in this study. These automation nodes are essential components of integrated BEMSSs, and this program performs tasks that they ought to. It can now be included in the BASs [24].

5.6 USING IOT TO IMPROVE ENERGY MANAGEMENT

Numerous benefits come from integrating IoT into energy management systems, which completely changes how businesses approach energy conservation and consumption.

- **Better energy tracking:** Businesses can monitor energy usage patterns in real-time thanks to IoT devices, which enable energy monitoring with previously unheard-of precision. Increased awareness of usage trends makes it easier to make well-informed decisions and permits preventative actions to maximize energy use.
- **Optimal patterns of energy use:** By utilizing data created by the Internet of Things, organizations can analyse trends in energy consumption and pinpoint inefficiencies. This practical knowledge establishes the foundation for putting specific plans into place that will take full advantage of energy use, diminish waste, and expand overall operative efficiency.
- **Improved intelligent energy management solutions:** Integration of IoT facilitates the creation of intelligent, dynamic energy management systems. In order to improve resource efficiency, these systems make use of IoT-enabled devices to automate procedures, modify energy use in real time, and react intelligently to changing demands. By using the Internet of Things, companies may take advantage of previously unheard-of possibilities for accurate energy management, cost reduction, environmental effect mitigation, and the promotion of sustainable practices.
- **A Better Environment:** Globally, businesses are implementing intelligent energy management systems to improve sustainability. The rationale is that compared to traditional technologies, these systems have an energy efficiency of about 50%. Although it is a duty of every business, protecting ecosystems is not the primary incentive. Customers are actually quite interested in sustainability, and they will undoubtedly be more satisfied if you prioritize sustainability in your business practices.
- **Integrated Green Energy:** Utilizing utilities, power consumption data, and energy monitoring devices, you may more effectively determine how to optimize the use of renewable energy in various services. Furthermore, it will assist you in putting good energy-saving strategies into action.
- **Optimization of Asset Maintenance:** For measuring the state and concert of machinery and equipment in power plants distributed network sensors and data analytics can be used. It's analogous to what way industrial amenities use associated technologies.
- **Automating Processes:** Modernization is a major investment for electric utilities and power distributors for reasons other than smart energy management through IoT. They also intend to revamp their processes in order to improve automation and optimize labor expenses. IoT-enabled monitoring solutions, for instance, can

help producers perform better maintenance and automate their on-site asset management.

- **Better abide by the rules:** Businesses employ analytics methods to understand how they adhere to existing conservational requirements in addition to using the technology Internet of Things for energy supervision in daily operations. Specific analytics methods offered by contemporary SaaS platforms indicate if clients are eligible for industry certifications, incentives, and programs.
- **Reduce operating costs:** Operational costs are significantly reduced as a result of automation, personnel optimization, and efficient asset maintenance. It is predicted that 90% of the time and effort spent on energy analysis, reporting, and calculation can be reduced just by using advanced analytics software.

5.7 IOT APPLICATIONS FOR ENERGY-SAVING INITIATIVES

There are various methods, techniques, and processes involved so due to this reason sometimes it creates confusion and is critical to manage energy properly. Through the initiation of the Internet of Things, however, it takes on a new dimension. By 2030, energy management systems that integrate IoT can reduce electricity uses by more than 1.6 petawatt-hours (PWH). For an entire year, that would be sufficient to power almost 150 million homes. Because they allow decision-makers to pinpoint areas for improvement and analyse how their choices affect energy usage, energy monitoring, and benchmarking are critical components of energy management. In the upcoming years, the Internet of Things is expected to emerge as the catalyst for sustainability and energy efficiency, opening the door to massive energy savings. By lowering operating costs slightly, IoT energy management solutions assist businesses in starting up an effective operation [25].

Temperature controls, air conditioning, and smart lighting	The most obvious method of energy conservation is to reduce energy waste. Modern sensor-based HVAC systems, smart lighting, thermostats, and other devices can optimize energy use while automatically maintaining ideal conditions in homes, workplaces, and other locations. To prevent energy waste, these systems are outfitted with a variety of sensors that may energetically modify the power consumption profiles in response to shifting conditions. Philips Hue is an outstanding illustration of an IoT energy management system. The business offers a range of intelligent LED lighting options for both indoor and outdoor use that can be tailored to the tastes and habits of users.
--	---

	<p>It has been demonstrated that Philips Hue family products use 85% less energy than conventional bulbs.</p>
Energy Control Systems	<p>Energy management digital systems allow companies, consumers, energy experts, and governments to keep an eye on, manage, and control their supply chain assets, resources, and operations. Meters, controllers, sensors, analytics tools and apps, and other components are typically included in these digital systems. For example, smart meters can dynamically measure spending, enable real-time monitoring of energy consumption, and communicate this information with end users and utility companies. Suppliers can then use the data to take preventive measures, develop customized demand-response programs, and modify prices. At the same time, users can limit electricity waste and react swiftly to abrupt changes in demand by using programs to manage their energy consumption.</p>
Management of Green Energy	<p>With the aid of IoT, it is now much easier to embrace and increase the use of sustainable energy. Domestic solar panels and IoT-enabled wind turbines can supply electricity to encounter all or fragment of a energy usage in the home. Consequently, under the full convergence scenario, home renewables can entirely off-grid a family by reducing the average energy expenditure by up to 100%.</p>
Solutions for Energy Storage	<p>A relatively new sector, energy storage is gaining a lot of interest in this era of expanding IoT use in smart homes and the idea of smart cities. In general, energy storage makes consumers more autonomous and resilient to power outages and other challenging situations. Smart energy storage gives households administrative capabilities and allows for effective and managed energy backup. Energy storage devices assist locals in making more educated choices about which loads to safeguard and how much energy to use off the grid. Users of sustainable energy sources, such as cosmological or wind, will be able to efficiently manage the power produced by integrating smart storage systems. They will also have the capability to accomplish excess energy and enhance their energy network.</p>

Interconnected Power Plants	IoT has the potential to optimize power production processes, which will save energy. Power plants, wind turbines, stations, etc. use a lot of energy and require resources, labor, and maintenance to operate. To help balance the load on the line and avoid overloads, sensors can be used to continuously perform conditional monitoring of wiring and equipment. Additionally, predictive maintenance minimizes expensive downtime, accidents, and blackouts while guaranteeing prompt equipment replacement.
-----------------------------	--

TABLE 5.1: IOT APPLICATIONS FOR ENERGY-SAVING INITIATIVES

The process of planning and managing the patterns of energy usage in various businesses is known as IoT Energy Management. It is intended to track and maximize energy compliance, which will improve capacity utilization, increase corporate productivity, save maintenance and labor costs, and make energy assets more reliable. Through the provision of Energy consumption data in real-time, the identification of impending energy savings, and the optimization of energy system performance, the IoT is revolutionizing the way energy is managed. Smart meters, sensors, and controllers are examples of IoT-enabled devices that are used in a variety of energy systems, such as transportation, buildings, and industrial processes, to gather data on energy use, track energy performance, and offer suggestions for enhancement.

5.8 THE IOT'S ENERGY MANAGEMENT FUTURE

A future marked by ongoing innovation and revolutionary breakthroughs that redefine methods for energy conservation and use is what the IoT's trajectory promises of governance of energy. The prospects of energy optimization is a collaborative symphony in which sustainable practices, safe networks, and intelligent machines all function together. We see an era where energy is a dynamic resource that is used effectively, responsibly, and universally available through the Internet of Things. Not only is technology undergoing a revolution, but our understanding of and interactions with the forces that drive our existence are also changing. Key Concept behind the increase the efficiency of the Internet of Things

- **Improvements in sensor technology:** Imagine a world in which every object, from light switches to wind turbines, has tiny, potent sensors that are always

gathering information on environmental conditions and energy usage. Decision-making that is accurate and data-driven will be made possible by the detailed, real-time picture of energy consumption that these omnipresent sensors will provide.

- **Machine learning and data analytics:** Mountains of sensor data will be processed by sophisticated algorithms, which will reveal hidden patterns and provide very accurate predictions about energy requirements. This will make it possible to proactively modify energy use, maximizing resource utilization and reducing waste.
- **Cloud Computing:** Massive volumes of energy data will be processed and analyzed using the cloud's enormous processing power, which will make it easier to create intelligent energy management systems that are capable of real-time learning and adaptation.

More accurate and predictive energy management techniques will be made possible by this development, allowing for proactive modifications based on real-time data insights. IoT's function in environmentally friendly procedures IoT is emerging as a champion for the integration of renewable energy as the world rushes toward a sustainable future. From sophisticated battery storage systems to efficient solar panel production, its networked sensors and sensors track and optimize each step of the renewable energy lifecycle. This data-driven strategy reduces waste, increases the output of renewable energy, and opens the door to a cleaner, more robust energy mix.

5.9 CHALLENGES FOR ENERGY MANAGEMENT USING THE INTERNET OF THINGS

IoT implementation presents several significant obstacles even though it significantly enhances the energy management process:

- **Problems with connectivity:** Low latency is necessary for IoT data transfer, but it might be challenging to do in places with gaps in 4G and 5G coverage. Widespread deployments of IoT devices may result in transmission delays and network congestion. These issues can be resolved with the aid of 5G investments and edge data processing.
- **Data security and privacy:** IoT devices need to be part of the business's safety perimeter and adequately secured against typical threats like ransomware and malware, DDoS assaults, and hijacking, just like any other technology. Similarly, appropriate security measures—such as data encryption, robust authentication,

and appropriate firmware security—must be in place to guarantee private and secure data transfers.

- **Complexity of integration:** Without updates, certain outdated energy management systems are inherently unable to communicate with IoT devices. Even with more recent technology, interoperability issues are brought on by the wide range of IoT device kinds and protocols. To enable expanded situations, careful device evaluation, IoT network planning, and EMS system re-engineering could be needed.
- **Scalability:** IoT device management gets more challenging as networks grow and data traffic rises. Investing in a suitable software stack for data gathering, remote device administration, and ongoing security monitoring is necessary to guarantee high system availability and scalability [26].

ACCORDING TO BIZTECH REPORT

According to the United States, global energy consumption is predicted to increase by 48% by 2040. The energy and utility industries will need to adjust with operational and technological efficiency to meet the impending demand growth, according to the Energy Information Administration. Businesses now primarily use the Internet of Things to do this. "IoT convergence within operations is becoming more significant," IDC Energy Insights research director John Villali says. The potential to transform the industry's future lies in connecting distributed energy, asset performance, and workforce management systems with smart devices and artificial intelligence, he says: "Utilities are realizing this and moving forward in that direction." In fact, according to 69 percent of energy businesses polled by SAS, IoT will be essential to their success in the future. Additionally, 74 percent of oil and gas industries and 80 percent of utilities have deployed some kind of IoT project, and many are already enjoying the benefits, according to Inmarsat study [27].

5.10 CONCLUSION

An innovative approach to energy management is provided by the incorporation of IoT technology into smart buildings, which significantly increases occupant comfort, operational cost savings, and energy efficiency. It is indisputable that IoT energy management solutions have revolutionary potential. As the world's energy needs continue to grow, IoT integration shows promise as it presents unmatched chances for sustainable development and effective resource use. When it comes to energy management, IoT can optimize energy use, lower consumption, and advance

sustainability. It can also lower carbon emissions and save money. The advantages of this technology are clear, ranging from promoting intelligent energy management systems to transforming energy monitoring through IoT devices. IoT-enabled businesses and industries save a lot of money, increase productivity, and optimize energy use patterns—all while helping to create a more sustainable future.

5.11 REFERENCES

- P. Asghari, A. M. Rahmani, and H. H. S. Javadi, "Internet of Things applications: A systematic review," *Computer Networks*, vol. 148, pp. 241-261, 2019
- S. Zeebaree and H. M. Yasin, "Arduino based remote controlling for home: power saving, security and protection," *International Journal of Scientific & Engineering Research*, vol. 5, pp. 266-272, 2014
- A. Tiwary, M. Mahato, A. Chidar, M. K. Chandrol, M. Shrivastava, and M. Tripathi, "Internet of Things (IoT): Research, architectures and applications," *International Journal on Future Revolution in Computer Science & Communication Engineering*, vol. 4, pp. 23-27, 2018.
- Nunberg, G. (2012) The Advent of the Internet: 12th April, Courses.
- Aggarwal, R. and Lal Das, M. (2012) RFID Security in the Context of “Internet of Things”. First International Conference on Security of Internet of Things, Kerala, 17-19 August 2012, 51-56.
- Madakam, S., Ramaswamy, R., & Tripathi, S. (2015). Internet of Things (IoT): A literature review. *Journal of Computer and Communications*, 3(5), 164-173.
- Digital Scientists 18 Applications of IoT Worth Knowing | Digital Scientists <https://digidalscientists.com/> / blog / real-world –applications -of-iot/
- IEEE blended learning <https://blp.ieee.org/what-is-iot-technology-and-its-applications/>.
- IoT in Energy Management: A Vision for Sustainable Practices. <https://www.kaaiot.com/iot-knowledge-base/iot-energy-management>
- Ejaz, W., Naeem, M., Shahid, A., Anpalagan, A., & Jo, M. (2017). Efficient energy management for the internet of things in smart cities. *IEEE Communications magazine*, 55(1), 84-91.
- Mattoni, B.; Gugliermetti, F.; Bisegna, F. A Multilevel Method to Assess and Design the Renovation and Integration of Smart Cities. *Sustain. Cities Soc.* **2015**, 15, 105–119.

- Qayyum, F., Jamil, H., Iqbal, N., & Kim, D. H. (2024). IoT-orchestrated optimal nanogrid energy management: Improving energy trading performance and efficiency via virtual operations. *International Journal of Electrical Power & Energy Systems*, 155, 109668.
- Manivannan, R. (2024). Research on IoT-based hybrid electrical vehicles energy management systems using machine learning-based algorithm. *Sustainable Computing: Informatics and Systems*, 41, 100943.
- Kaur, J. (2024). Towards a Sustainable Triad: Uniting Energy Management Systems, Smart Cities, and Green Healthcare for a Greener Future. In *Emerging Materials, Technologies, and Solutions for Energy Harvesting* (pp. 258-285). IGI Global.
- Wu, P., & Mei, X. (2024). Microgrids energy management considering net-zero energy concept: The role of renewable energy landscaping design and IoT modeling in digital twin realistic simulator. *Sustainable Energy Technologies and Assessments*, 63, 103621.
- Saleem, M. U., Shakir, M., Usman, M. R., Bajwa, M. H. T., Shabbir, N., Shams Ghahfarokhi, P., & Daniel, K. (2023). Integrating smart energy management system with internet of things and cloud computing for efficient demand side management in smart grids. *Energies*, 16(12), 4835.
- Saleem, M. U., Usman, M. R., & Shakir, M. (2021). Design, implementation, and deployment of an IoT based smart energy management system. *IEEE Access*, 9, 59649-59664.
- Hashmi, S. A., Ali, C. F., & Zafar, S. (2021). Internet of things and cloud computing-based energy management system for demand side management in smart grid. *International Journal of Energy Research*, 45(1), 1007-1022.
- Aliero, M. S., Qureshi, K. N., Pasha, M. F., & Jeon, G. (2021). Smart Home Energy Management Systems in Internet of Things networks for green cities demands and services. *Environmental Technology & Innovation*, 22, 101443.
- Said, O., Al-Makhadmeh, Z., & Tolba, A. M. R. (2020). EMS: An energy management scheme for green IoT environments. *IEEE access*, 8, 44983-44998.
- Pawar, P., & TarunKumar, M. (2020). An IoT based Intelligent Smart Energy Management System with accurate forecasting and load strategy for renewable generation. *Measurement*, 152, 107187.
- Mataloto, B., Ferreira, J. C., & Cruz, N. (2019). LoBEMS—IoT for building and energy management systems. *Electronics*, 8(7), 763.
- Marinakis, V., & Doukas, H. (2018). An advanced IoT-based system for intelligent energy management in buildings. *Sensors*, 18(2), 610.

- Ożadowicz, A., & Grela, J. (2015, September). Control application for Internet of Things energy meter—A key part of integrated building energy management system. In *2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA)* (pp. 1-4). IEEE.
- <https://webbylab.com/blog/how-iot-can-help-with-energy-management/>
- Infopulse logo <https://www.infopulse.com/blog/iot-energy-management>
- <https://biztechmagazine.com/article/2022/08/how-internet-things-changing-future-energy-management>